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Abstract

In this paper moderately large amplitude vibrations of a polygonally shaped composite plate with thick layers are

analyzed. Three homogeneous and isotropic layers with a common Poisson�s ratio are perfectly bonded and their ar-

bitrary thickness and material properties are symmetrically disposed about the middle plane. Mindlin–Reissner kine-

matic assumptions are implemented layerwise, and as such model both the global and local response. Geometric

nonlinear effects arising from longitudinally constrained supports are taken into account by Berger�s approximation of

nonlinear strain–displacement relations. Overall cross-sectional rotations are defined and subsequently a correspon-

dence of this complex problem to the simpler case of a homogenized shear-deformable nonlinear plate with effective

stiffness and hard hinged boundary conditions is found. The nonlinear steady-state response of composite plates

subjected to a time-harmonic lateral excitation is investigated and the phenomena of nonlinear resonance are studied

and evaluated.
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1. Introduction

Structural elements such as beams, plates and shells composed of two or more layers are frequently used

in various engineering applications. In the last decades, numerous theories have been developed in an effort

to predict deformation and stresses of these elements, see e.g. Leissa (1981). In general there exist two

classes of theories to describe approximately the kinematics and stress states of layered structures. In the so-

called equivalent-single-layer theories the in-plane displacements and their derivatives with respect to the

lateral coordinate are continuous through the thickness, and effective material and plate properties are

introduced by means of homogenization (e.g. Whitney and Pagano, 1970; Reddy, 1984; Gordaninejad and

Bert, 1989; Suzuki et al., 1996). Alternatively, admitting a separate displacement field within the individual
layers of the composite leads to layerwise theories (e.g. Di Taranto, 1965; Yan and Dowell, 1972; Adam,

2001). A comparative study of different theories of laminate plates is given by Reddy (1997). Based on von
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Karman�s nonlinear plate equations (von Karman, 1910) several modified theories for composite plates

have been developed in an effort to take into account moderately large deformations (e.g. Reddy and Chao,

1981; Shi et al., 1997; Ribeiro and Petyt, 1999). An approximation of von Karman�s equations has been

introduced by Berger (1955) and, subsequently, applied to various homogeneous and composite plate and
shallow shell theories (e.g. Heuer et al., 1992; Heuer, 1994; Heuer and Ziegler, 1998). It is commonly ac-

cepted that Berger�s geometrically nonlinear plate equations gives satisfactory results when the plate edges

are prevented from in-plane motion. A comprehensive treatment of nonlinear theories for layered plates

including a review of corresponding literature can be found in Sathyamoorthy (1998).

Following a procedure employed for linear composite plates by Heuer et al. (1997) and Adam (2001) the

scope of the presented paper is to derive a unifying representation of the influence of moderately large

amplitudes on vibrations of a layered plate with polygonal planform. The edges of the considered plate are

assumed to be prevented from in-plane motions and are hard hinged supported. Berger�s approximation of
nonlinear strain–displacement relations are applied to take into account geometrical nonlinear effects

arising from longitudinally constrained supports. The homogeneous layers are assumed to consist of iso-

tropic linear elastic materials. According to layerwise theories, Mindlin–Reissner kinematic relations are

applied separately to each individual layer. In the special case of a laminated plate composed of isotropic

thick layers with physical properties symmetrically disposed about the middle plane, a correspondence to a

nonlinear moderately thick homogeneous plate is found. Besides the theoretical interest in such a corres-

pondence the present formulation can be used for generating benchmark solutions in the context of the

finite element method.
For a qualitative study, the nonlinear steady-state response of layered plates subjected to time-harmonic

lateral excitation is investigated.
2. Governing equations for a three-layer plate

In the present analysis a plate composed of three isotropic and homogeneous layers of moderate
thickness is considered. All layers are perfectly bonded and their arbitrary thicknesses and linear elastic

properties are symmetrically disposed about the middle plane. The plate is referenced to a Cartesian system

of coordinates x; y; z, where the xy-plane ðz ¼ 0Þ is the middle plane, and z is a coordinate perpendicular to

that plane. The layers may exhibit strongly different elastic moduli with a common Poisson�s ratio m, and

therefore, Mindlin–Reissner kinematic assumptions of shear-deformable plates are applied to each layer

separately to derive the field equations.

The displacement field of the ith layer is assumed to be of the form, Yu (1995)
iuj ¼ iu
ð0Þ
j þ z iwj; wi ¼ w; i ¼ 1; 2; 3; j ¼ x; y; ð1Þ
where iux, iuy represent in-plane displacements of the ith layer in x- and y-direction, respectively, at distance

z from the xy-plane, iuð0Þx , iuð0Þy denote in-plane displacements at z ¼ 0 and iwx, iwy are layerwise cross-sec-

tional rotations, i ¼ 1, 2, 3 (see Fig. 1). The index i ¼ 2 refers to quantities of the core, while i ¼ 1, 3 belong

to the upper and lower face, respectively, w denotes the lateral deflection of the plate common to all layer

planes. The components iu
ð0Þ
j of the faces (i ¼ 1, 3) can be expressed in terms of 2u

ð0Þ
j and the cross-sectional

rotations in order to satisfy the interface displacement continuity relations, Fig. 1, according to
iu
ð0Þ
j ¼ 2u

ð0Þ
j þ zið2wj � iwjÞ; i ¼ 1; 2; 3; j ¼ x; y: ð2Þ
In (2) z1 ¼ �h2=2, z3 ¼ h2=2 denote vertical coordinates from the middle plane to the interfaces between
the core and the upper and lower face, respectively.
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Fig. 1. Three-layer composite plate, xz-plane, and corresponding horizontal displacement field.
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In this study it is assumed that the transverse deflections of a plate are not small compared to its

thickness, and the interaction between the membrane stresses and the curvatures must be considered. This

interaction results in the stretching of the middle plane, which leads to nonlinear terms in the strain–dis-

placement relations. For moderately large deflections w of a plate these nonlinear relations, leading to a

geometrically nonlinear formulation of the governing plate equations, are given by, see e.g. Sathyamoorthy

(1998),
ej ¼ 2u
ð0Þ
j;j þ

1

2
ðw;jÞ2

; j ¼ x; y; ð3:1Þ
exy ¼ 2uð0Þx;y þ 2uð0Þy;x þ w;xw;y ; ð3:2Þ
where ex, ey are the middle plan strains and exy is the in-plane shear strain. Hence, the strains at any point

away from the middle plane at a distance z become
iej ¼ iuj;j þ
1

2
ðw;jÞ2

; icxy ¼ iux;y þ iuy;x þ w;xw;y ; icjz ¼ iuj;z þ w;j; i ¼ 1; 2; 3; j ¼ x; y: ð4Þ
In (3) and (4) ð Þ;j indicates spatial differentiation of ð Þ with respect to j : oð Þ=oj.
The constitutive relations, however, are linear. It is assumed that the normal stress component rz is

negligible and can be dropped. For an isotropic, elastic material the stress components rx, ry , sxy are related

to the strains by means of the Hooke�s law, see e.g. Ziegler (1998),
irj ¼
2Gi

1 � m
ðiej þ m iekÞ; isxy ¼ Gi icxy ; i ¼ 1; 2; 3; j ¼ x; k ¼ y and j ¼ y; k ¼ x; ð5Þ
in which Gi is the shear modulus of the homogeneous ith layer.

Transverse shear stress components sxz, syz are specified to be continuous across the interfaces. Two types

of approximations are acknowledged in the literature. If the ‘‘correct’’ shear stress, which is expressed by

means of the law of conservation of momentum, is used, the in-plane equilibrium is automatically satisfied,
see e.g. Swift and Heller (1974), Yu (1995). Alternatively, prescribing the continuity of the transverse shear

stresses according to Hooke�s law derives a simplified boundary value problem, Yan and Dowell (1972),

Durocher and Solecki (1976) and Heuer (1992)
isjz ¼ Giðiwj þ w;jÞ ¼ iþ1sjz ¼ Giþ1ðiþ1wj þ w;jÞ; i ¼ 1; 2; j ¼ x; y: ð6Þ
In analogy to the Mindlin theory for homogeneous plates Eq. (6) exhibits the simplified assumption that
the shear stress is uniformly distributed throughout the layer. From this equation it follows that the cross-

sectional rotations of both faces are equal
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1wj ¼ 3wj; j ¼ x; y; ð7Þ
since both faces are composed of the same material ðG1 ¼ G3Þ.
Layerwise stress resultants are determined by integration of the stress components, Eq. (5), over the

thickness of the layers. At first, the cross-sectional rotations of the faces are eliminated by means of Eq. (6),

and hence, the layerwise resultants can be expressed in terms of the lateral deflection w, the cross-sectional

rotations 2wx, 2wy of the core, the middle plane strains and their derivatives. The plate stress resultants are

subsequently determined by layerwise summation. The overall bending moments imx, imy , imxy and shear

forces iqx, iqy of the composite plate are obtained as
mj ¼
2

1 � m

X3

i¼1

ðbi

�
þ CiÞ2wj;j þ biw;jj þ m½ðbi þ CiÞ 2wk;k þ biw;kk�

�
; j ¼ x; k ¼ y and k ¼ x; j ¼ y;

ð8:1Þ

mxy ¼
X3

i¼1

ðbi

�
þ CiÞð2wx;y þ 2wy;xÞ þ 2biw;xy

�
; ð8:2Þ

qj ¼ dð2wj þ w;jÞ; j ¼ x; y; ð9Þ
where Ai;Bi;Ci and Si are the layerwise stiffness coefficients determined by
Ai ¼ Gihi; Bi ¼ 1
2
Giða2

iþ1 � a2
i Þ; Ci ¼ 1

3
Giða3

iþ1 � a3
i Þ; Si ¼ j2Gihi; ð10:1Þ

a1 ¼ �h=2; a2 ¼ �h2=2; a3 ¼ h2=2; a4 ¼ h=2 ð10:2Þ

and
d ¼ 2S1

G1

G2

þ S2; b1 ¼ b3 ¼
1

2
B1h2

�
þ C1

�
G2

G1

�
� 1

�
; b2 ¼ 0; ð11:1Þ

g1 ¼ �g3 ¼
1

2
A1h2

�
þ B1

�
G2

G1

�
� 1

�
; g2 ¼ 0: ð11:2Þ
The factor j2 appearing in Si is a shear coefficient introduced in the manner of Mindlin (1951). The

proper choice of its value is discussed in Yu (1995).

Immovable in-plane boundary conditions at the edges C are considered throughout the paper, i.e.
C : 2u
ð0Þ
j ¼ 0; j ¼ x; y; ð12Þ
and hence, moderately large lateral deflections may be considered by means of an approximation originally

due to Berger (1955) in order to derive a simplified set of nonlinear governing equations. This approxi-

mation is based on the assumption that the elastic energy due to the second invariant in the extensional
strain energy may disregarded as compared to the square of the first invariant without substantially

affecting the response. In Berger�s approach the in-plane forces are characterized by a time-variant isotropic

force n, which is constant throughout the plate domain and is related to the deflection by the averaging

integral, Wah (1963),
n ¼ D
2X

Z
X
ðw2

;x þ w2
;yÞdX; D ¼ 2

1 � m

X3

i¼1

Ai; ð13Þ
with X being the area of the plate domain. Following the arguments of Wu and Vinson (1969), n is not

explicitly affected by the influence of shear.
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The equations of motion are derived by considering the free-body diagram of an infinitesimal plate

element, loaded by a given distributed transverse forcing function pðx; y; tÞ. Thereby, in a common

approximation, both, the longitudinal as well as the rotatory inertia are neglected
i€uu
ð0Þ
j ¼ 0; i

€wwj ¼ 0; ð14Þ

thus, limiting the analysis to the lower frequency band of structural dynamics. Conservation of angular

momentum about the x- and y-axes and conservation of momentum in x-, y- and z-direction render after

some algebra the following equation of motion of the nonlinear plate problem in terms of the lateral

deflection w,
KDDwþ K
Se

nDDw� nDw� l
K
Se

D€wwþ l€ww ¼ p � K
Se

Dp: ð15Þ
Expression (15) can be interpreted as the equation of a homogeneous isotropic shear-deformable plate

with bending stiffness K, effective shear stiffness Se and mass per unit area l, forced by the given lateral load

p. The effective plate properties are given by
K ¼ 2C1 þ C2; Se ¼
d
a
K; l ¼ 2q1h1 þ q2h2; ð16:1Þ

a ¼ 2

1 � m
B1h2

G2

G1

�	
� 1

�
þ 2C1

G2

G1

þ C2



: ð16:2Þ
In (16.1) q1; q2 are the mass densities of the faces and the core, respectively.

The boundary conditions of a composite shear-deformable plate with hard hinged supports can be
modeled in the form (see e.g. Adam, 2001)
C : w ¼ 0; iws ¼ 0; mn ¼ 0; i ¼ 1; 2; 3; ð17Þ

where n, s are local Cartesian coordinates at boundary C with normal n pointing outwards. Furthermore,

conservation of momentum in z-direction at C for a differential plate element renders
C : qn;n þ qs;s þ nDwþ p ¼ 0: ð18Þ

Considering only polygonal contours C : w ¼ 0 can be expressed by w;s ¼ w;ss ¼ 0 and iws ¼ 0 may be

replaced by iws;s ¼ 0. Evaluating Eqs. (17) and (18) finally leads to two boundary conditions in w,
C : w ¼ 0; Dwþ 1

Se

nDw ¼ � 1

Se

p: ð19Þ
3. An analogy to a homogeneous shear-deformable plate

According to Heuer (1992) for a composite beam and Adam (2001) for a linear composite plate a

complete analogy to the nonlinear homogeneous shear-deformable plate on constrained in-plane supports
is introduced by defining effective cross-sectional rotations ewx, ewy . The relation between ewx, ewy and the

actual plate deformation is found by equating the overall shear forces of the composite plate, Eq. (9), with

the shear force of a corresponding homogenized shear-deformable plate
qj ¼ Seðewj þ w;jÞ; j ¼ x; y; ð20Þ
and subsequent solution as
ewj ¼
d
Se

2wj þ
d
Se

�
� 1

�
w;j; j ¼ x; y: ð21Þ
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Eq. (21) are substituted into (8) and also the overall bending and twisting moments are obtained in

analogy to a homogeneous plate
mj ¼ Kðewj;j þ m ewk;kÞ; j ¼ x; k ¼ y and k ¼ x; j ¼ y; ð22:1Þ

mxy ¼
1 � m

2
Kðewx;y þ ewy;xÞ: ð22:2Þ
Consequently, by means of Eqs. (20)–(22) the equation of motion (15) can be separated to form a set of

three equations
l€ww� SeðDwþ ewx;x þ ewy;yÞ � nDw ¼ p; ð23:1Þ

K ewj;jj

�
þ 1 � m

2
ewj;kk þ

1 þ m
2

ewk;jk

�
� Seðewj þ w;jÞ ¼ 0; j ¼ x; k ¼ y and k ¼ x; j ¼ y: ð23:2Þ
Eq. (23) describe the higher order problem of a geometric nonlinear composite plate with piecewise

continuous in-plane displacement fields in full analogy to the lower order engineering theory of an isotropic

homogeneous shear-deformable plate with horizontally constraint supports.

Boundary conditions for simply supported hard hinged straight edges are specified in analogy to a

homogeneous elastic shear-deformable plate and they can be written as
C : w ¼ 0; ews ¼ 0; ewn;n ¼ 0: ð24Þ
The coupled set of equation (23) is solved together with the actual boundary conditions (24) for w,

ewx and ewy . Subsequently, the cross-sectional rotations of the core and the faces are to be determined.

Decomposition of (21) yields the cross-sectional rotations of the core as
2wj ¼
Se

d ewj � 1

�
� Se

d

�
w;j; j ¼ x; y: ð25Þ
The cross-sectional rotations of the faces are calculated from (6)
iwj ¼
G2

Gi
ð2wj þ w;jÞ � w;j; i ¼ 1; 3; j ¼ x; y: ð26Þ
4. Evaluation of the nonlinear response

Eq. (23) are put formally into linear form by defining geometric nonlinearities in the operator as an

additional equivalent lateral load acting on the homogeneous linear background plate, see e.g. Adam

(2002). This additional equivalent lateral load is given by
q ¼ nDw: ð27Þ

Hence, efficient solution methods of the linear theory of flexural vibrations such as modal analysis be-

come applicable. Since the distribution of q is not known in advance, but depends on the current state of

deformation, the dynamic response has to be found incrementally by stepping the time and updating the

equivalent lateral load. Thereby, the history of the load variables is divided into increments. The response

increments dw, dewx, dewy are formulated as a modal expansion
dw ¼
X1

m¼1;n¼1

dYmnUðmnÞ; ð28:1Þ
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dewk ¼
X1

m¼1;n¼1

dYmn kW
ðmnÞ; k ¼ x; y; ð28:2Þ
where UðmnÞ, xW
ðmnÞ, yW

ðmnÞ denote ortho-normalized mode shapes. Substitution of these transformations
into Eq. (23) and following the procedure of modal analysis (see e.g. Magrab, 1979) leads to a formally

decoupled system of SDOF oscillator equations for the increments of the modal coordinates dYmn,
d€YYmn þ 2fmnxmnd _YYmn þ x2
mndYmn ¼

1

l
ðdPmn þ dQmnÞ: ð29Þ
In Eq. (29) structural damping is introduced via modal damping coefficients fmn. Incorporation of vis-

cous damping in the response is another convenient feature of the modal approach to the nonlinear
problem. Furthermore, each mode can be damped individually, which seems to be more general than as-

suming a priori proportional Rayleigh damping. In Eq. (29) xmn is the mnth natural frequency and
dPmn ¼
Z

X
UmndpdX; dQmn ¼

Z
X

UmndqdX; ð30Þ
denote the generalized given and equivalent lateral load, respectively. The increments of the equivalent

lateral load dq accounting for the nonlinear geometric effects become, Eqs. (13) and (27),
dq ¼ nadDwþ dn½ðDwÞa þ dDw�; ð31Þ

dn ¼ D
X

Z
X

ðw;xÞadw;x

	
þ ðw;yÞadw;y þ

1

2
ðdw2

;x þ dw2
;yÞ



dX: ð32Þ
In (31) and (32) a subscript ð Þa refers to variables at the beginning of the time step. The solution of the

oscillator Eq. (29) is given by Duhamel�s convolution integral. In order to secure convergent behavior

within each time step a simple secant relation is applied, see Adam and Ziegler (1997) for details.
5. Application

In the following the dynamic response of a rectangular plate to time-harmonic excitation is examined.

The plate of length a, width b and thickness h consists of three layers with layer thickness ratios

h2=h ¼ h1ð3Þ=h ¼ 1=3. The overall dimension of the considered plate is characterized by the factor a=b ¼ 2.

The mechanical properties of the faces and the core are specified through the ratio G1ð3Þ=G2 ¼ 20. Poisson�s
ratio is selected to be uniform to all layers, m ¼ 0:3. A shear coefficient of j2 ¼ 1 is considered. In particular,
linear and nonlinear frequency response functions due to a uniformly distributed lateral load pðx; yÞ ¼ p0

are derived by sweeping the excitation frequency m. At time t ¼ 0 the time-harmonic load is subjected to the

plate and a time history analysis is performed as described in Section 4. After decay of the transient res-

ponse the maximum of the steady-state response is recorded for excitation frequencies in the neighborhood

of the first and second natural frequency of the corresponding linear structure.

For the solution of the actually boundary value problem the natural frequencies xmn and mode shapes

UðnmÞ, xW
ðnmÞ and yW

ðnmÞ of a rectangular shear-deformable plate are given by, see e.g. Magrab (1979),
xmn ¼ amn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KSe

lðSe þ KamnÞ

s
; amn ¼

mp
a


 �2

þ np
b


 �2

; ð33Þ

UðmnÞðx; yÞ ¼ Amn sin
mpx
a

sin
npy
b

; ð34:1Þ
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xW
ðmnÞðx; yÞ ¼ Bmn cos

mpx
a

sin
npy
b

; yW
ðmnÞðx; yÞ ¼ Cmn sin

mpx
a

cos
npy
b

; ð34:2Þ

Amn ¼
2ffiffiffiffiffi
ab

p ; Bmn ¼ � AmnamSe

Kamn þ Se

; Cmn ¼ � AmnbnSe

Kamn þ Se

; am ¼ mp
a

; bn ¼
np
b
: ð35Þ
The modal damping coefficients of all modes included in the computation are set to fmn ¼ 0:05.

Fig. 2 shows non-dimensional amplitude functions of the lateral deflection at the center of the layered

plate with a ratio thickness to length h=a ¼ 0:1 for different non-dimensional load amplitudes p
 ¼ 2, 5, 10.
Thereby, p
 is defined as
p
 ¼ p0a2b
K

: ð36Þ
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The amplitude functions W are normalized by means of the corresponding static central deflection ws,

and the excitation frequency is related to the fundamental natural plate frequency x11. As expected the

plate behaves in the neighborhood of the first natural frequency as a hard spring, and with increasing load

amplitude the deviation to the linear response becomes more pronounced. The bending deformation of the
resonance curves leads for p
 ¼ 5 and 10 to multivalued amplitudes and the entire solution splits into stable

and unstable branches. At those points where the tangent is vertical the well-known jump phenomenon

occurs. However, in Fig. 2 only the stable portions of the response are displayed (since the outcomes de-

rived by a time history analysis). The dynamic response close to the second symmetric natural plate fre-

quency is almost not affected by the nonlinear terms in the plate equations. In addition, the correspondent

linearized response is also presented in the same figure by a dashed line.

In Fig. 3 amplitude response functions of the individual cross-sectional rotations 1wx and 2wx, the ef-

fective cross-sectional rotation ewx and the derivative of the deflection with respect to xw;x at point
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ðx=y ¼ 0=0:5bÞ are shown for a plate with the same thickness to length ratio h=a ¼ 0:1. The x coordinate

points in the direction of length a and its origin is in the lower corner on the left of the plate. All individual

rotations are normalized by means of the corresponding static effective cross-sectional rotation ew
s
x. A non-

dimensional load amplitude of p
 ¼ 2 is considered. It can be seen that the cross-sectional rotations of the
core and the faces do not coincide. Particularly in the higher frequency range the deviation of the layer

cross-sectional rotations is more pronounced. The amplitude response of the cross-sectional rotations of the

faces 1wx are slightly overestimated by w;x. Fig. 4 presents amplitude response functions of the cross-sec-

tional rotations 1wy , 2wy , ewy as well as of w;y at point ðx=y ¼ 0:5a=0Þ, and they are related to the static

effective cross-sectional rotation ew
s
y . The response in the neighborhood of the second symmetric mode is

less pronounced compared to the results of Fig. 3. In Figs. 5 and 6 the stable branches for the same

quantities as in Figs. 3 and 4 are shown for p
 ¼ 10. For this non-dimensional load amplitude at x11=3 the
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and of the derivation of the deflection with respect to y at ðx=y ¼ 0:5a=0Þ for a load of p
 ¼ 10. Ratio of characteristic length over

height h=a ¼ 0:1. Stable branches of the response.
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influence of subharmonic resonance can be recognized by little spikes in the response. In addition, also the

corresponding linearized quantities are set in contrast by thin lines in the same figures. Figs. 3–6 demon-

strate that the nonlinear as well as linearized dynamic behavior of the considered plate ðh=a ¼ 0:1Þ cannot

be predicted adequately by means of a first-order equivalent single-layer approximation, where a single
cross-sectional rotations determines the horizontal displacement field for all layers.

In the following the influence of shear and plate thickness to length ratio on the harmonic steady-state

response is studied. Figs. 7 and 8 compare non-dimensional amplitude functions of the central lateral

deflection for plates with h=a ¼ 0:1 and 0.05 and non-dimensional load amplitudes p
 of 2 and 10 con-

sidering and disregarding shear deformation. Thereby, for both considerations (shear deformable and rigid

in shear) the amplitudes are related to the static deflection of the shear deformable plate and the excitation

frequencies are normalized by means of the first natural frequency of the shear deformable composite plate.
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In Fig. 7, where results for h=a of 0.1 are presented, the shift of the peak response for the plate considered

rigid in shear to the right hand side can be clearly seen. For a ratio of h=a of 0.05 the peak deflection in the

neighborhood of the first natural frequency is much less affected by shear, in particular when the plate

response is highly nonlinear ðp
 ¼ 10Þ, see Figs. 8.
In the subsequent Figs. 9–12 the steady-state peak amplitude response of 1wx, 2wx, ewx, w;x at

ðx=y ¼ 0=0:5bÞ and 1wy , 2wy , ewy , w;y at ðx=y ¼ 0:5a=0Þ for thickness to length ratios of h=a ¼ 0:05 and 0.01

and load p
 ¼ 2 is presented. Normalization as described for Figs. 3–6 is applied. Unlike to the results for

h=a ¼ 0:1 (Figs. 3–6) 1wx, ewx, w;x on the one side 1wy , ewy , w;y on the other side are almost in coincidence for

h=a ¼ 0:05, however, the cross-sectional rotations for the core 2wx and 2wy are different. These results in-

dicate that a shear deformable theory is essential in order to predict horizontal displacements, even when
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the lateral deflection is not much effected by shear (see Fig. 8), since in the classical plate theory different
cross-sectional rotations are not admitted. A comparison for a ratio of h=a ¼ 0:01 reveals the diminishing

influence of shear deformation on the dynamic response for thin plates, see Figs. 11 and 12. In the whole

frequency range all quantities are almost in coincidence.
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