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Abstract

In this paper moderately large amplitude vibrations of a polygonally shaped composite plate with thick layers are
analyzed. Three homogeneous and isotropic layers with a common Poisson’s ratio are perfectly bonded and their ar-
bitrary thickness and material properties are symmetrically disposed about the middle plane. Mindlin—Reissner kine-
matic assumptions are implemented layerwise, and as such model both the global and local response. Geometric
nonlinear effects arising from longitudinally constrained supports are taken into account by Berger’s approximation of
nonlinear strain—displacement relations. Overall cross-sectional rotations are defined and subsequently a correspon-
dence of this complex problem to the simpler case of a homogenized shear-deformable nonlinear plate with effective
stiffness and hard hinged boundary conditions is found. The nonlinear steady-state response of composite plates
subjected to a time-harmonic lateral excitation is investigated and the phenomena of nonlinear resonance are studied
and evaluated.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Structural elements such as beams, plates and shells composed of two or more layers are frequently used
in various engineering applications. In the last decades, numerous theories have been developed in an effort
to predict deformation and stresses of these elements, see e.g. Leissa (1981). In general there exist two
classes of theories to describe approximately the kinematics and stress states of layered structures. In the so-
called equivalent-single-layer theories the in-plane displacements and their derivatives with respect to the
lateral coordinate are continuous through the thickness, and effective material and plate properties are
introduced by means of homogenization (e.g. Whitney and Pagano, 1970; Reddy, 1984; Gordaninejad and
Bert, 1989; Suzuki et al., 1996). Alternatively, admitting a separate displacement field within the individual
layers of the composite leads to layerwise theories (e.g. Di Taranto, 1965; Yan and Dowell, 1972; Adam,
2001). A comparative study of different theories of laminate plates is given by Reddy (1997). Based on von
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Karman’s nonlinear plate equations (von Karman, 1910) several modified theories for composite plates
have been developed in an effort to take into account moderately large deformations (e.g. Reddy and Chao,
1981; Shi et al., 1997; Ribeiro and Petyt, 1999). An approximation of von Karman’s equations has been
introduced by Berger (1955) and, subsequently, applied to various homogeneous and composite plate and
shallow shell theories (e.g. Heuer et al., 1992; Heuer, 1994; Heuer and Ziegler, 1998). It is commonly ac-
cepted that Berger’s geometrically nonlinear plate equations gives satisfactory results when the plate edges
are prevented from in-plane motion. A comprehensive treatment of nonlinear theories for layered plates
including a review of corresponding literature can be found in Sathyamoorthy (1998).

Following a procedure employed for linear composite plates by Heuer et al. (1997) and Adam (2001) the
scope of the presented paper is to derive a unifying representation of the influence of moderately large
amplitudes on vibrations of a layered plate with polygonal planform. The edges of the considered plate are
assumed to be prevented from in-plane motions and are hard hinged supported. Berger’s approximation of
nonlinear strain—displacement relations are applied to take into account geometrical nonlinear effects
arising from longitudinally constrained supports. The homogeneous layers are assumed to consist of iso-
tropic linear elastic materials. According to layerwise theories, Mindlin—Reissner kinematic relations are
applied separately to each individual layer. In the special case of a laminated plate composed of isotropic
thick layers with physical properties symmetrically disposed about the middle plane, a correspondence to a
nonlinear moderately thick homogeneous plate is found. Besides the theoretical interest in such a corres-
pondence the present formulation can be used for generating benchmark solutions in the context of the
finite element method.

For a qualitative study, the nonlinear steady-state response of layered plates subjected to time-harmonic
lateral excitation is investigated.

2. Governing equations for a three-layer plate

In the present analysis a plate composed of three isotropic and homogeneous layers of moderate
thickness is considered. All layers are perfectly bonded and their arbitrary thicknesses and linear elastic
properties are symmetrically disposed about the middle plane. The plate is referenced to a Cartesian system
of coordinates x, y, z, where the xy-plane (z = 0) is the middle plane, and z is a coordinate perpendicular to
that plane. The layers may exhibit strongly different elastic moduli with a common Poisson’s ratio v, and
therefore, Mindlin—Reissner kinematic assumptions of shear-deformable plates are applied to each layer
separately to derive the field equations.

The displacement field of the ith layer is assumed to be of the form, Yu (1995)

iuj:iuj(-o)+zil/lj wi=w, i=1273 j=xy, (1)

where ;u,, ju, represent in-plane displacements of the ith layer in x- and y-direction, respectively, at distance
z from the xy-plane, "), ju{” denote in-plane displacements at z = 0 and ), i, are layerwise cross-sec-
tional rotations, i = 1, 2, 3 (see Fig. 1). The index i = 2 refers to quantities of the core, while i = 1, 3 belong
to the upper and lower face, respectively, w denotes the lateral deflection of the plate common to all layer
planes. The components iuj(-o) of the faces (i = 1, 3) can be expressed in terms of 2u§0) and the cross-sectional

rotations in order to satisfy the interface displacement continuity relations, Fig. 1, according to
=" 4zl =), i=1,23, j=x. (2)

In (2) z; = —hy /2, z3 = hy /2 denote vertical coordinates from the middle plane to the interfaces between
the core and the upper and lower face, respectively.
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Fig. 1. Three-layer composite plate, xz-plane, and corresponding horizontal displacement field.

In this study it is assumed that the transverse deflections of a plate are not small compared to its
thickness, and the interaction between the membrane stresses and the curvatures must be considered. This
interaction results in the stretching of the middle plane, which leads to nonlinear terms in the strain—dis-
placement relations. For moderately large deflections w of a plate these nonlinear relations, leading to a

geometrically nonlinear formulation of the governing plate equations, are given by, see e.g. Sathyamoorthy
(1998),

1 .
e =) +5 0w, j=x, (3.1)
ey = zuf(?; + zu;?x) +wwy, (3.2)

where e,, e, are the middle plan strains and e,, is the in-plane shear strain. Hence, the strains at any point
away from the middle plane at a distance z become

& =il —|—§(w‘j)2, ey = ilhey Tl FWW,, iV =il Wy, P=1,2,3, j=x,. 4)

In (3) and (4) () indicates spatial differentiation of () with respect to j: 8()/dj.

The constitutive relations, however, are linear. It is assumed that the normal stress component o, is
negligible and can be dropped. For an isotropic, elastic material the stress components o,, 7,, T,, are related
to the strains by means of the Hooke’s law, see e.g. Ziegler (1998),

2G; . . .
iaj:m(i8j+vi£k)’ iTXy:Giiyxw l:172737 J =X, k:yand]:% k:)C, (5)
in which G; is the shear modulus of the homogeneous ith layer.

Transverse shear stress components t,., 7,. are specified to be continuous across the interfaces. Two types
of approximations are acknowledged in the literature. If the “correct” shear stress, which is expressed by
means of the law of conservation of momentum, is used, the in-plane equilibrium is automatically satisfied,
see e.g. Swift and Heller (1974), Yu (1995). Alternatively, prescribing the continuity of the transverse shear
stresses according to Hooke’s law derives a simplified boundary value problem, Yan and Dowell (1972),
Durocher and Solecki (1976) and Heuer (1992)

iTjiz = Gi(i% +wy) =T = Gi+1(f+1lﬁj +w,), =12, j=x1y. (6)

In analogy to the Mindlin theory for homogeneous plates Eq. (6) exhibits the simplified assumption that
the shear stress is uniformly distributed throughout the layer. From this equation it follows that the cross-
sectional rotations of both faces are equal
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1‘%’23 j? j:xayv (7)

since both faces are composed of the same material (G, = G3).

Layerwise stress resultants are determined by integration of the stress components, Eq. (5), over the
thickness of the layers. At first, the cross-sectional rotations of the faces are eliminated by means of Eq. (6),
and hence, the layerwise resultants can be expressed in terms of the lateral deflection w, the cross-sectional
rotations »,, >, of the core, the middle plane strains and their derivatives. The plate stress resultants are
subsequently determined by layerwise summation. The overall bending moments ;m,, im,, im,, and shear
forces iqy, iq, of the composite plate are obtained as

2 - . .
— D> B+ Coyy+ Bwy + V(B + C)aes + Bwul}, j=x, k=yandk=x, j=y,
i=1
(8.1)
3
Z (Bi+ C) oWy + 2%,0) + 2Bwy ] (82)
qj = 5(2‘#}' + W,j)7 ] =X,), (9)
where 4;,B;, C; and S; are the layerwise stiffness coefficients determined by
A; =G, B;=1iG(a},, —ad}), C =1G(a,,—a), S =1Gh, (10.1)
7]’[/27 a2:7h2/2, Cl3:h2/2, a4:h/2 (102)
and
G 1 G
0=28 248, B =p= 5 Bih+ G Z_1), B,=0, (11.1)
G2 Gl
1 G,
uh 13 (2 1hz'i‘/31)(G1 ) mn=20 (11.2)

The factor x> appearing in S; is a shear coefficient introduced in the manner of Mindlin (1951). The
proper choice of its value is discussed in Yu (1995).
Immovable in-plane boundary conditions at the edges I" are considered throughout the paper, i.e.

ron =0, j=xy. (12)

and hence, moderately large lateral deflections may be considered by means of an approximation originally
due to Berger (1955) in order to derive a simplified set of nonlinear governing equations. This approxi-
mation is based on the assumption that the elastic energy due to the second invariant in the extensional
strain energy may disregarded as compared to the square of the first invariant without substantially
affecting the response. In Berger’s approach the in-plane forces are characterized by a time-variant isotropic
force n, which is constant throughout the plate domain and is related to the deflection by the averaging
integral, Wah (1963),

D
n=s5 (w +w)d

2 3
A; 1
e (13)

with Q being the area of the plate domain. Following the arguments of Wu and Vinson (1969), n is not
explicitly affected by the influence of shear.



C. Adam | International Journal of Solids and Structures 40 (2003) 4153-4166 4157

The equations of motion are derived by considering the free-body diagram of an infinitesimal plate
element, loaded by a given distributed transverse forcing function p(x,y;t¢). Thereby, in a common
approximation, both, the longitudinal as well as the rotatory inertia are neglected

1”50) = 07 il/./.j = 07 (14)

thus, limiting the analysis to the lower frequency band of structural dynamics. Conservation of angular
momentum about the x- and y-axes and conservation of momentum in x-, y- and z-direction render after
some algebra the following equation of motion of the nonlinear plate problem in terms of the lateral
deflection w,

K K K
KAAw + —nAAw — nAw — pn—Aw + pw = p — — Ap. (15)
S. Se S.

Expression (15) can be interpreted as the equation of a homogeneous isotropic shear-deformable plate
with bending stiffness K, effective shear stiffness S. and mass per unit area p, forced by the given lateral load
p. The effective plate properties are given by

0
K=2C1 —|—C2, Sc Z&K, [122/)1]11 —|—[)2hz7 (161)

2 G2 G2
=——|B ——1 2C) == . 16.2
o 1—v[1h2<G1 >+ CIGI—FCz} (16.2)
In (16.1) p,, p, are the mass densities of the faces and the core, respectively.

The boundary conditions of a composite shear-deformable plate with hard hinged supports can be
modeled in the form (see e.g. Adam, 2001)

F:W:07 il//x:()v mn:()a i:172737 (17)

where n, s are local Cartesian coordinates at boundary I with normal n pointing outwards. Furthermore,
conservation of momentum in z-direction at I" for a differential plate element renders

I: Gnn + s + nAw +p =0. (18)

Considering only polygonal contours I' : w = 0 can be expressed by w, = w, = 0 and iy, = 0 may be
replaced by ;i = 0. Evaluating Eqs. (17) and (18) finally leads to two boundary conditions in w,

1 1
r:w=0, AerS—enAw:fS—ep. (19)

3. An analogy to a homogeneous shear-deformable plate

According to Heuer (1992) for a composite beam and Adam (2001) for a linear composite plate a
complete analogy to the nonlinear homogeneous shear-deformable plate on constrained in-plane supports
is introduced by defining effective cross-sectional rotations .y, .i/,. The relation between ., .y, and the
actual plate deformation is found by equating the overall shear forces of the composite plate, Eq. (9), with
the shear force of a corresponding homogenized shear-deformable plate

CIj:Se(elpj+Wj)7 ]'ZXJ, (20)
and subsequent solution as
0

0 .
elpj = S_lej_'_ (S__ 1>W,ja J=X). (21)
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Eq. (21) are substituted into (8) and also the overall bending and twisting moments are obtained in
analogy to a homogeneous plate

m; :K(elpj‘j‘i»vewk,k)v J=x, k:y and k=x, Jj=Y (221)

1—v
2

mxy ==

K(elpx,y + elpy‘x)' (222)

Consequently, by means of Eqs. (20)—(22) the equation of motion (15) can be separated to form a set of
three equations

v — Se(Aw + o, + e, ) — nAw = p, (23.1)
1—v 1+v . .
K\ ey, +Te'///:kk + Tewk.jk —Se(Y;+w;) =0, j=x, k=yandk=x, j=y. (23.2)

Eq. (23) describe the higher order problem of a geometric nonlinear composite plate with piecewise
continuous in-plane displacement fields in full analogy to the lower order engineering theory of an isotropic
homogeneous shear-deformable plate with horizontally constraint supports.

Boundary conditions for simply supported hard hinged straight edges are specified in analogy to a
homogeneous elastic shear-deformable plate and they can be written as

r:w=0, ,=0, oy, =0. (24)
The coupled set of equation (23) is solved together with the actual boundary conditions (24) for w,

Y, and ., Subsequently, the cross-sectional rotations of the core and the faces are to be determined.
Decomposition of (21) yields the cross-sectional rotations of the core as

S S .
2%:3:%— (1 _§>W,ja J=X%). (25)
The cross-sectional rotations of the faces are calculated from (6)
Gy . :
i‘/jj:E(Zl//j—i_W.j)_W‘ﬁ l:1a3a J=XxX). (26)

4. Evaluation of the nonlinear response

Eq. (23) are put formally into linear form by defining geometric nonlinearities in the operator as an
additional equivalent lateral load acting on the homogeneous linecar background plate, see e.g. Adam
(2002). This additional equivalent lateral load is given by

q = nAw. (27)

Hence, efficient solution methods of the linear theory of flexural vibrations such as modal analysis be-
come applicable. Since the distribution of ¢ is not known in advance, but depends on the current state of
deformation, the dynamic response has to be found incrementally by stepping the time and updating the
equivalent lateral load. Thereby, the history of the load variables is divided into increments. The response
increments 0w, detp,, ey, are formulated as a modal expansion

ow = 0 Yy @™ (28.1)

m=1,n=1
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5€l//k = Z 5Ymnkql(mn>; k= X, ), (282)

m=1,n=1

where @ i) 5 p"™) denote ortho-normalized mode shapes. Substitution of these transformations
into Eq. (23) and following the procedure of modal analysis (see e.g. Magrab, 1979) leads to a formally
decoupled system of SDOF oscillator equations for the increments of the modal coordinates 6%,

5?71”’1 + 2Cmnwmn5Ymn + U)fnnéYﬂll’l = (5PW171 + 5an)' (29)

1
u
In Eq. (29) structural damping is introduced via modal damping coefficients {,,. Incorporation of vis-
cous damping in the response is another convenient feature of the modal approach to the nonlinear
problem. Furthermore, each mode can be damped individually, which seems to be more general than as-
suming a priori proportional Rayleigh damping. In Eq. (29) w,,, is the mnth natural frequency and

5Pmn :/dsmnépdga 5ann:/¢nzn5qd9a (30)
Q Q

denote the generalized given and equivalent lateral load, respectively. The increments of the equivalent
lateral load og accounting for the nonlinear geometric effects become, Egs. (13) and (27),

0q = n,0Aw + on[(Aw), + SAw], (31)

D 1
o1 =2 [ Jowan,+ w40+ v2) a2 &
/ ,

In (31) and (32) a subscript (), refers to variables at the beginning of the time step. The solution of the
oscillator Eq. (29) is given by Duhamel’s convolution integral. In order to secure convergent behavior
within each time step a simple secant relation is applied, see Adam and Ziegler (1997) for details.

5. Application

In the following the dynamic response of a rectangular plate to time-harmonic excitation is examined.
The plate of length a, width » and thickness % consists of three layers with layer thickness ratios
hy/h = hy3)/h = 1/3. The overall dimension of the considered plate is characterized by the factor a/b = 2.
The mechanical properties of the faces and the core are specified through the ratio Gy(3)/G, = 20. Poisson’s
ratio is selected to be uniform to all layers, v = 0.3. A shear coefficient of x*> = 1 is considered. In particular,
linear and nonlinear frequency response functions due to a uniformly distributed lateral load p(x,y) = po
are derived by sweeping the excitation frequency v. At time ¢ = 0 the time-harmonic load is subjected to the
plate and a time history analysis is performed as described in Section 4. After decay of the transient res-
ponse the maximum of the steady-state response is recorded for excitation frequencies in the neighborhood
of the first and second natural frequency of the corresponding linear structure.

For the solution of the actually boundary value problem the natural frequencies w,,, and mode shapes
@ plm and ) Pm) of a rectangular shear-deformable plate are given by, see e.g. Magrab (1979),

o= S (M) ()’ o

D) (x,y) = Ay sin sin?7 (34.1)
a
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Lyl (x,¥) = By cos@ sin@7 y‘P<"’”) (x,y) = Cyn sin@ cos@7 (34.2)
a b a b
2 AmnamSe AmnbnSe mT nm
Amn:—7 an:_iv Cmn:_ia m = bn:_' 35
Jab Koty + Se Kogm +5. "~ a b (35)

The modal damping coefficients of all modes included in the computation are set to {,, = 0.05.

Fig. 2 shows non-dimensional amplitude functions of the lateral deflection at the center of the layered
plate with a ratio thickness to length 4#/a = 0.1 for different non-dimensional load amplitudes p* = 2, 5, 10.
Thereby, p* is defined as

« oa2b

=5 (36)
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Fig. 2. Non-dimensional linear and nonlinear amplitude functions of the lateral deflection at the center of the plate for different loads
p*. Ratio of characteristic length over height #/a = 0.1. Stable branches of the response.
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Fig. 3. Non-dimensional nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in x-direction and of the
derivation of the deflection with respect to x at (x/y = 0/0.5b) for a load of p* = 2. Ratio of characteristic length over height #/a = 0.1.
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The amplitude functions W are normalized by means of the corresponding static central deflection wy,
and the excitation frequency is related to the fundamental natural plate frequency wi;. As expected the
plate behaves in the neighborhood of the first natural frequency as a hard spring, and with increasing load
amplitude the deviation to the linear response becomes more pronounced. The bending deformation of the
resonance curves leads for p* = 5 and 10 to multivalued amplitudes and the entire solution splits into stable
and unstable branches. At those points where the tangent is vertical the well-known jump phenomenon
occurs. However, in Fig. 2 only the stable portions of the response are displayed (since the outcomes de-
rived by a time history analysis). The dynamic response close to the second symmetric natural plate fre-
quency is almost not affected by the nonlinear terms in the plate equations. In addition, the correspondent
linearized response is also presented in the same figure by a dashed line.

In Fig. 3 amplitude response functions of the individual cross-sectional rotations ¥, and >, the ef-
fective cross-sectional rotation .Y, and the derivative of the deflection with respect to ,w, at point
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Fig. 4. Non-dimensional nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in y-direction and of the
derivation of the deflection with respect to y at (x/y = 0.54/0) for a load of p* = 2. Ratio of characteristic length over height #/a = 0.1.
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Fig. 5. Non-dimensional linear and nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in x-direction
and of the derivation of the deflection with respect to x at (x/y = 0/0.5b) for a load of p* = 10. Ratio of characteristic length over
height //a = 0.1. Stable branches of the response.
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(x/y =0/0.5b) are shown for a plate with the same thickness to length ratio #/a = 0.1. The x coordinate
points in the direction of length @ and its origin is in the lower corner on the left of the plate. All individual
rotations are normalized by means of the corresponding static effective cross-sectional rotation ;. A non-
dimensional load amplitude of p* = 2 is considered. It can be seen that the cross-sectional rotations of the
core and the faces do not coincide. Particularly in the higher frequency range the deviation of the layer
cross-sectional rotations is more pronounced. The amplitude response of the cross-sectional rotations of the
faces 1y, are slightly overestimated by w,. Fig. 4 presents amplitude response functions of the cross-sec-
tional rotations 1, 21, </, as well as of w,, at point (x/y = 0.5a/0), and they are related to the static
effective cross-sectional rotation ¢,. The response in the neighborhood of the second symmetric mode is
less pronounced compared to the results of Fig. 3. In Figs. 5 and 6 the stable branches for the same
quantities as in Figs. 3 and 4 are shown for p* = 10. For this non-dimensional load amplitude at w,;/3 the

ls»""T'"'I""T""T""T""A
E Yy nonlinear 7
L Y linear b |
S [ | —e— X
® 10L
LQ .
S [
>
5. b
—o r
e I
w0 °f
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OV n n P ST— F—
0 05 1 15 2 25 3
vie,

Fig. 6. Non-dimensional linear and nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in y-direction
and of the derivation of the deflection with respect to y at (x/y = 0.5a/0) for a load of p* = 10. Ratio of characteristic length over
height #/a = 0.1. Stable branches of the response.

L
. h/a=0.1 shear deformable
< 10~ N | rigid in shear
- [
< [

-]
o 8F
S [
2" L
- 6
s 0
n [
S 4t
= [
" [
S Ll
2 [
O'A
0

Fig. 7. Non-dimensional linear amplitude functions of the lateral deflection at the center of the plate for a loads p* = 2, 10. Proposed
(shear deformable) and classical (rigid in shear) plate theory. Ratio of characteristic length over height 4/a = 0.1. Stable branches of
the response.
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influence of subharmonic resonance can be recognized by little spikes in the response. In addition, also the
corresponding linearized quantities are set in contrast by thin lines in the same figures. Figs. 3-6 demon-
strate that the nonlinear as well as linearized dynamic behavior of the considered plate (#/a = 0.1) cannot
be predicted adequately by means of a first-order equivalent single-layer approximation, where a single
cross-sectional rotations determines the horizontal displacement field for all layers.

In the following the influence of shear and plate thickness to length ratio on the harmonic steady-state
response is studied. Figs. 7 and 8 compare non-dimensional amplitude functions of the central lateral
deflection for plates with #/a = 0.1 and 0.05 and non-dimensional load amplitudes p* of 2 and 10 con-
sidering and disregarding shear deformation. Thereby, for both considerations (shear deformable and rigid
in shear) the amplitudes are related to the static deflection of the shear deformable plate and the excitation
frequencies are normalized by means of the first natural frequency of the shear deformable composite plate.

h/a=0.05

W(0.5 a/0.5 b)/w,(0.5 a/0.5 b)

10 s

— T

shear deformable
rigid in shear

Fig. 8. Non-dimensional linear amplitude functions of the lateral deflection at the center of the plate for a load p* = 2, 10. Proposed
(shear deformable) and classical (rigid in shear) plate theory. Ratio of characteristic length over height #/a = 0.05. Stable branches of

the response.

10—

¥ (0/0.5 b)/,_'(0/0.5 b)

Fig. 9. Non-dimensional nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in x-direction and of the
derivation of the deflection with respect to x at (x/y =0/0.5b) for a load of p* = 2. Ratio of characteristic length over height

h/a = 0.05. Stable branches of the response.
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In Fig. 7, where results for //a of 0.1 are presented, the shift of the peak response for the plate considered
rigid in shear to the right hand side can be clearly seen. For a ratio of /a of 0.05 the peak deflection in the
neighborhood of the first natural frequency is much less affected by shear, in particular when the plate
response is highly nonlinear (p* = 10), see Figs. 8.

In the subsequent Figs. 9-12 the steady-state peak amplitude response of |y, 2., ¥, w, at
(x/y =0/0.5b) and 1\, 20, b, w,, at (x/y = 0.5a/0) for thickness to length ratios of /a = 0.05 and 0.01
and load p* = 2 is presented. Normalization as described for Figs. 3-6 is applied. Unlike to the results for
h/a = 0.1 (Figs. 3-6) ¢, Y, w, on the one side 11//},, el,by, w,, on the other side are almost in coincidence for
h/a = 0.05, however, the cross-sectional rotations for the core ,i, and 2, are different. These results in-
dicate that a shear deformable theory is essential in order to predict horizontal displacements, even when

12—

ok

¥ (0.5 a/0) /e\vys(o.s a/0)
(2]
T

Fig. 10. Non-dimensional nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in y-direction and of the
derivation of the deflection with respect to y at (x/y =0.5a/0) for a load of p* =2. Ratio of characteristic length over height
h/a = 0.05. Stable branches of the response.

¥ (0/0.5b) /W (0105 b)
N w
T

Fig. 11. Non-dimensional nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in x-direction and of the
derivation of the deflection with respect to x at (x/y =0/0.5b) for a load of p* =2. Ratio of characteristic length over height
h/a = 0.01. Stable branches of the response.
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Fig. 12. Non-dimensional nonlinear amplitude functions of the layerwise and effective cross-sectional rotations in y-direction and of the
derivation of the deflection with respect to y at (x/y =0.5a/0) for a load of p* = 2. Ratio of characteristic length over height
h/a = 0.01. Stable branches of the response.

the lateral deflection is not much effected by shear (see Fig. 8), since in the classical plate theory different
cross-sectional rotations are not admitted. A comparison for a ratio of 4/a = 0.01 reveals the diminishing
influence of shear deformation on the dynamic response for thin plates, see Figs. 11 and 12. In the whole
frequency range all quantities are almost in coincidence.
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